메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김범진 (인하대학교) 이한음 (인하대학교) 양영훈 (선박해양플랜트연구소) 강상길 (인하대학교)
저널정보
한국정보기술학회 한국정보기술학회논문지 한국정보기술학회논문지 제22권 제10호(JKIIT, Vol.22, No.10)
발행연도
2024.10
수록면
35 - 41 (7page)
DOI
10.14801/jkiit.2024.22.10.35

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
객체 탐지는 딥러닝 기술의 발전으로 원격 탐사 분야에서 주목받고 있지만 자연 이미지에 기반한 기존 모델은 작은 물체가 포함된 원격 탐사 이미지의 특징을 반영하지 못해 바로 적용했을 때 성능 저하가 발생한다. 본 연구에서는 주석이 없는 데이터셋과 있는 데이터셋을 함께 활용하는 이중 모델 학습 구조를 도입했다. Teacher 모델은 특징 어텐션 기반 지역 제안 증강 모듈을 통해 고품질의 슈도 라벨(Pseudo label)을 생성하고, student 모델은 이를 학습하며, 지수 이동 평균 전략(EMA, Exponential Moving Average)으로 teacher모델을 업데이트한다. 두 개의 원격 탐사 이미지 데이터셋에서 작은 물체가 포함된 이미지를 선별하여 제안한 모델의 성능을 검증한 결과, 기존 모델보다 17.7% 성능이 향상되었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안 시스템 구성
Ⅲ. 실험
Ⅳ. 결론 및 향후 과제
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0