메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Deepak Ghimire (Korea Electronics Technology Institute) Dayoung Kil (Soongsil University) Seong-heum Kim (Soongsil University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2024
발행연도
2024.10
수록면
1,110 - 1,113 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we explore the impact of structure pruning on model compression. Structured pruning, which removes specific structures within the model such as entire neurons, channels, or filters in convolutional neural networks, targets particular elements for removal. This is distinct from weight pruning, which eliminates individual weights regardless of their location in the model. On top of our previous publications, the focus of this work is to study of reducing mobile stems in CNN-transformer architectures, building upon previous publications. Here, the mobile stems often make transformer architectures more efficient for deployment on mobile devices or other resource-constrained environments. Many pruning methods for mobile stems involve a sequential process of training, pruning, and fine-tuning stages. In contrast, our approach involves automatically selecting filter pruning criteria based on magnitude or similarity from a specified pool of criteria, adjusting the specific pruning layer in each iteration based on the network’s overall loss on a small subset of training data. To alleviate sudden accuracy drops from pruning, the network undergoes brief retraining after reducing a predefined number of floating-point operations (FLOPs). Optimal pruning rates for each layer in mobile stems are automatically determined. Experiments on the VGGNet, ResNet, and MobileNet models using the CIFAR-10 and ImageNet benchmark datasets validate the effectiveness of the proposed method. Additionally, we discuss remaining tasks and ongoing research for the future.

목차

Abstract
1. INTRODUCTION
2. RELATED WORKS
3. OUR METHOD
4. RESULTS AND DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0