메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Huong Nguyen Dinh (Dongguk University) SeungHyun Woo (Dongguk University) Hyeon-Jin Jeon (Dongguk University) Ji-Seok Yang (Dongguk University) Yunsik Son (Dongguk University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2023 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.14 No.1
발행연도
2023.1
수록면
77 - 81 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, the application of software in diverse industries such as cloud computing, enterprise software, and IoT is gradually increasing as we move towards the 4th industrial revolution. However, as software expands in size and complexity, security attack threats continue to emerge as a result of potential program flaws, causing significant societal losses. As a prevention, a secure software development lifecycle that incorporates software weakness throughout the development process is crucial. A highly efficient tool for addressing this software weakness is the weakness analyzer which can analyze weaknesses in software at the time of development. Among these, static analysis tools can identify weaknesses without running programs and can identify targeted weaknesses. However, these tools generally ten to report a significant number of false alarms. In this study, we propose a system to report a significant number of false alarms. In this study, we propose a system to reduce false alarms by using the BERT model to determine the reliability of the weakness analysis results generated by the static analysis tool and reclassifying the derived reliable alarms into the classification model. Through this, it is feasible to increase effectively true alarms while maintaining the advantages of the analysis tool and properly inspecting the weakness in the program.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. SYSTEM MODELS AND METHODS
Ⅲ. PREPARING THE DATASET AND MODEL EVALUATION
Ⅳ. CONCLUSIONS AND FUTURE WORKS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0