메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김상운 (명지대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제53권 제3호
발행연도
2016.3
수록면
59 - 66 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이 논문에서는 비유사도-기반 분류(dissimilarity-based classifications: DBC)를 효율적으로 수행할 수 있는 차원 축소 방법들을 비교 평가한 실험 결과를 보고한다. DBC에선 분류를 위해 대상 물체를 측정한 결과 값들(특징 요소들의 집합)을 이용하는 대신에 각 대상 물체들 사이의 비유사도를 측정하여 분류한다. 현재 DBC와 관련된 이슈들 중의 하나는 대규모 데이터를 취급할 경우에 비유사도 공간의 차원이 고차원으로 되는 문제가 있다. 이 문제를 해결하기 위하여 현재 프로토타입 선택(prototype selection: PS)방법이나 차원 축소(dimension reduction: DR)방법을 이용하고 있다. PS는 전체 학습 데이터에서 프로토타입을 추출하여 비유사도 공간을 구성하는 방법이고, DR은 전체 학습 데이터로 먼저 비유사도 공간을 구성한 다음 이 공간의 차원을 축소하는 방법이다. 이 논문에서는 PS이나 DR 대신에, 학습 데이터에 대한 주성분 분석으로 적절한 차원의 고유 공간 (Eigen space: ES)을 구성한 다음, 이 고유 공간으로 매핑 된 벡터들 사이의 l<SUB>p</SUB>-놈(norm) 거리를 비유사도 거리로 측정하여 이용하는 DBC를 제안한다. 인터넷에 공개된 인공 및 실세계 데이터를 이용하여 최 근방 이웃 분류규칙으로 ES에서 수행한 DBC의 분류 성능을 측정한 결과, 고유공간의 차원을 적절하게 선정하였을 경우 PS와 DR를 이용한 DBC보다 분류 성능이 더 향상되었음을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. DBC를 위한 차원 축소법
Ⅳ. 실험
Ⅳ. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-002731043