메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김직수 (한국과학기술정보연구원) 구엔 카오 (한국과학기술정보연구원) 김서영 (한국과학기술정보연구원) 황순욱 (한국과학기술정보연구원)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.43 No.6
발행연도
2016.6
수록면
613 - 620 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 대규모의 작업을 고성능으로 처리하기 위한 Many-Task Computing(MTC) 기술을 기존의 빅데이터 처리 플랫폼인 Hadoop에 적용하기 위한 MOHA(Many-Task Computing on Hadoop) 프레임워크에 대해 기술한다. 세부적으로는 MOHA의 기본 개념과 개발 동기, 분산 작업 큐에 기반한 PoC(Proof-of-Concept) 수행 결과를 제시하고 향후 연구 방향에 대해서 논의하고자 한다. MTC 응용은 각각의 태스크들이 요구하는 I/O 처리량은 상대적으로 많지 않지만, 동시에 대량의 태스크들을 고성능으로 처리해야하고 이들이 파일을 통해서 통신한다는 특징을 가지고 있다. 따라서 기존의 상대적으로 큰 데이터 블록 사이즈에 기반한 Hadoop 응용과는 또 다른 패턴의 데이터 집약형 워크로드라고 할 수 있다. 이러한 MTC 기술과 빅데이터 기술의 융합을 통해 멀티 응용 플랫폼으로 진화하고 있는 Hadoop 생태계에 신규 프레임워크로서 대규모 계산과학 응용을 실행할 수 있는 MOHA를 추가하여 기여할 수 있을 것이다.

목차

요약
Abstract
1. MOHA: MTC와 Hadoop의 만남
2. MOHA 관련 기술 분석 및 설계
3. MOHA PoC(Proof-of-Concept) 수행 결과
4. 결론 및 향후 계획
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0