메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정성민 (세종대학교) 연한별 (세종대학교) 정대교 (세종대학교) 유상봉 (세종대학교) 김석연 (세종대학교) 장윤 (세종대학교)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제22권 제4호
발행연도
2016.9
수록면
21 - 30 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
위험관리 시스템은 단 시간에 의사결정하기 위해 스트림 데이터를 실시간으로 분석 할 수 있어야 한다. 많은 데이터 분석 시스템은 CPU와 디스크 데이터베이스로 구성되어 있다. 하지만, cpu 기반 시스템은 스트림 데이터를 실시간으로 분석하는데 어려움이 있다. 스트림 데이터는 1ms부터 1시간, 1일까지 생성주기가 다양하다. 한 개의 센서가 생성하는 데이터는 작다. 하지만 수 만개의 센서가 생성하는 데이터는 매우 크다. 예를 들어 10만개 센서가 1초에 1GB 데이터를 생성한다면, CPU 기반 시스템은 이를 분석 할 수 없다. 이러한 이유로 실시간 스트림 데이터 분석 시스템은 빠른 처리 속도와 확장성이 필요하다. 본 논문에서는 GPU와 하이브리드 데이터베이스를 이용한 시각화 가속 기술을 제안한다. 제안한 기술을 평가하기 위해 우리는 지하 파이프라인에 설치된 센서와 트윗 데이터를 활용하여 실시간 릭 탐지 시각적 분석 시스템에 적용했다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 시각화 가속 기술
4. 센서 데이터를 이용한 균열 탐지
5. 비정형 스트림 데이터 기반 이상 탐지
6. 시스템
7. 결론 및 향후연구
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-001137905