메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제20권 제1호
발행연도
2016.3
수록면
94 - 102 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 기계학습 알고리즘을 이용하여 다중물리(Multi-physics) 시뮬레이션의 반복 횟수를 획기적으로 줄일 수 있는 다중물리해석 예측 방법을 제안한다. 기존의 다중물리해석 시뮬레이션의 경우 소요되는 시간과 노력을 줄이기 위해 시뮬레이션 자체에 대한 방법과 환경 개선에 초점이 맞추어져 있으나 본 논문에서는 다중물리 시뮬레이션 결과를 기계학습 알고리즘으로 학습하여 추가적인 시뮬레이션을 수행하지 않고 학습된 기계학습 알고리즘을 사용하여 수십분에서 수시간에 걸리는 다중 물리 해석과 유사한 결과를 수초 내에 예측할 수 있음을 보였다. 기계학습 알고리즘 간의 성능을 비교하여 다중물리해석에 적합한 기계학습 알고리즘을 확인하였으며 가장 우수한 성능을 보인 가우시안 프로세스 회귀(Gaussian Process Regression)의 경우 100개 이하의 학습 샘플만으로도 우수한 예측 결과를 얻어낼 수 있음을 확인하였다. 제안하는 방식을 통해 시뮬레이션을 하고자 하는 모델의 형상이나 재질이 변경될 경우 기존의 시뮬레이션 결과로 학습된 알고리즘이 있다면 시뮬레이션을 반복 수행하기 전에 알고리즘을 이용하여 결과를 예측할 수 있어 시뮬레이션의 반복 횟수를 줄일 수 있을 것으로 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-056-001389816