메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이진학 (한국해양과학기술원) 류경호 (한국해양과학기술원) 백원대 (한국해양과학기술원) 정원무 (한국해양과학기술원)
저널정보
한국해안해양공학회 한국해안·해양공학회논문집 한국해안해양공학회논문집 제29권 제4호
발행연도
2017.8
수록면
180 - 188 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근에 기후변화로 인해 너울성 고파 등 이상고파의 출현빈도가 높아지고 항만에서의 하역중단이 증가할 가능성이 커지고 있다. 하역중단을 최소화할 수 있도록 방파제(breakwater) 등을 추가적으로 건설하여 정온도(tranquility)를 향상시키는 것도 매우 중요하지만, 하역중단시점을 미리 예보함으로써 항만 운영을 효율적으로 하는 것도 또한 중요하다. 본 연구에서는 효율적인 항만 운영을 위하여 하역중단시점을 사전에 예보할 수 있도록 바람 예보자료를 이용하여 항외 주요 지점에서의 파랑자료를 추산하고, 복잡한 지형을 가진 항내 주요 지점에 대해서는 장기 관측을 실시하여 파랑자료를 수집한 후, 광역 계산지점에서의 파고와 항내 관측지점에서의 파고 사이의 관계를 자기회귀모델(auto-regressive model)과 인공신경망(artificial neural networks) 모델을 이용하여 바람예보자료를 이용한 수치실험 결과만으로 항내 파고를 예측하고, 하역중단시점을 예보할 수 있는 방법을 제안하였다. 제안방법의 적용성을 평가하기 위하여 포켓(pocket) 형상의 비교적 복잡한 지형 조건을 가진 포항신항 내 파랑관측지점에서의 파고 예측 및 하역중단시점을 예측하였으며, 그 결과를 관측자료와 비교하여 제안 방법의 성능을 검증하였다. 인공신경망 모델의 파고 예측결과를 자기회귀모델에 의한 파고 예측결과와 비교할 때, 인공신경망 모델의 예측결과가 관측자료와 의 상관계수가 높고 RMS 오차가 작음을 알 수 있었고, 하역중단시점의 예측에 있어서도 인공신경망의 결과가 자기회귀모델의 결과보다 상대적으로 우수함을 알 수 있었다.

목차

요지
Abstract
1. 서론
2. 이론적 배경
3. 항내파고 및 하역중단 예측 모델의적용 및 분석
4. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0