메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Byeong-Gil Kim (Kwangwoon University) Seung-Hyun Choi (Kwangwoon University) Seong-Won Lee (Kwangwoon University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.7 No.3
발행연도
2018.6
수록면
251 - 256 (6page)
DOI
10.5573/IEIESPC.2018.7.3.251

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
For lithium-ion secondary batteries used as power sources, battery control systems are inevitably required to operate the batteries efficiently and to protect the batteries and systems during various operational situations. Existing battery state-of-charge (SOC) estimation techniques allow internal impedance measurement only under static load situations for the monitoring and management of accurate internal impedance. Such techniques cannot be used in electric vehicle battery management systems in which a static load is not possible while driving. To address such problems, this study proposes an internal impedance measurement technique for dynamic load situations. Each frequency component ratio is acquired by performing a real-time fast Fourier transform of the current, and the correlation between internal impedance measurement errors under a dynamic load is obtained using each frequency component ratio. An experiment demonstrates that the correlation coefficient is 0.910 between the component ratio in the 4.375–5 Hz band and the internal impedance measurement error. Therefore, the frequency component ratio is determined as the internal impedance measurement from the proposed algorithm. The average error between the internal impedance obtained by the proposed algorithm and that obtained by a battery simulator is 0.0011 Ω.

목차

Abstract
1. Introduction
2. SOC Estimation Method with Impedance Track
3. Proposed Method
4. Experiment Results and Discussion
5. Conclusion
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-003112446