메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정준영 (숭실대학교) 김기백 (숭실대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제23권 제4호
발행연도
2018.7
수록면
511 - 518 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 잡음 환경의 음성 신호를 시간-주파수 영역으로 분해한 후 0 또는 1로 표현되는 이진 마스크를 적용하여 음성의 명료도를 높이는 방법에 대해 다룬다. 시간-주파수 영역으로 분해된 신호에 대해 상대적으로 잡음이 많이 섞인 경우는 마스크 “0”을 할당하여 제거하고, 그렇지 않은 경우는 마스크 “1”을 할당하여 보존하는 방식을 채택한다. 이러한 이진 마스크의 추정은 가우시안 혼합 모델로 학습된 베이지안 분류기를 사용한다. 가우시안 혼합 모델 학습에 포함된 잡음 환경에 대해서는 학습된 모델을 이용하여 추정된 이진 마스크의 적용을 통해 잡음 환경에서 음성 명료도를 높일 수 있으나 학습에 포함되지 않은 잡음 환경에 대해서는 음성 명료도를 향상시키지 못하는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위해 학습 모델을 잡음 환경에 적응시키고자 한다. 새로운 잡음 환경에 대처하고자 음성 인식에서 사용되는 대표적인 화자 적응 방법을 적용하였으며 실험을 통해 새로운 잡음 환경에 적응함을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 이진 마스크 추정을 통한 잡음 제거
Ⅲ. 이진 마스크 추정 모델의 환경 적응
Ⅳ. 실험 결과
Ⅴ. 결론
참고문헌 (References)

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-567-003351181