메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이협건 (Seoul Gangseo Campus of Korea Polytech) 김영운 (Hanyang University) 박지용 (Hanyang University) 이진우 (Hanyang University)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제11권 제5호
발행연도
2018.10
수록면
593 - 600 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인터넷과 스마트기기의 발달로 인해 소셜미디어 등 다양한 미디어의 접근의 용이해짐에 따라 많은 양의 빅데이터들이 생성되고 있다. 특히 다양한 인터넷 서비스를 제공하는 기업들은 고객 성향 및 패턴, 보안성 강화를 위해 맵리듀스 기반 빅데이터 분석 기법들을 활용하여 빅데이터 분석하고 있다. 그러나 맵리듀스는 리듀스 단계에서 생성되는 리듀서 객체의 수를 한 개로 정의하고 있어, 빅데이터 분석할 때 처리될 많은 데이터들이 하나의 리듀서 객체에 집중된다. 이로 인해 리듀서 객체는 병목현상이 발생으로 빅데이터 분석 처리율이 감소한다. 이에 본 논문에서는 로그 분석처리율 향상을 위한 맵리듀스 기반 분할 빅데이터 분석 기법을 제안한다. 제안한 기법은 리듀서 분할 단계와 분석 결과 병합 단계로 구분하며 리듀서 객체의 수를 유동적으로 생성하여 병목현상을 감소시켜 빅데이터 처리율을 향상시킨다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안한 분할 빅데이터 분석 기법
4. 성능평가
5. 결론
REFERENCES

참고문헌 (6)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-569-000123641