메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김종현 (금오공과대학교) 조현정 (금오공과대학교) 김병만 (금오공과대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제23권 제6호
발행연도
2018.12
수록면
9 - 19 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 게임 산업의 발달과 게임 방송에 대한 사람들의 관심이 많아짐에 따라 기존 게이머들이 아닌 사람들도 게임에 관심을 많이 보이고 있고, 게임 구매로 이어지고 있다. 하지만, 일반사용자가 매일 수십 개씩 발매되는 게임 중에 어떤 게임이 자신이 재밌게 즐길 수 있는 게임인지를 판단하기 어렵다. 따라서 게임 판매 플랫폼에서 게임 추천 기능을 갖추고 있지만 그들의 매출 증가를 위한 수단으로 사용되어 그들의 할인 제품이나 신제품에 초점을 맞춰 추천을 해주기 때문에 추천 시스템의 정확도가 낮다. 이러한 이유 때문에 본 논문에서는 사용자에 대한 추천 만족도를 높이고 사용자 경험을 적절히 반영한, 사용자가 남긴 평점을 기반으로 한 게임 추천 시스템을 구성하였다. 시스템에서는 협력 필터링을 이용한 예상 평가 점수 기능과 나이브 베이지안을 이용한 게임 추천 기능을 구현하여 사용자에게 빠르고 정확한 추천을 할 수 있도록 구현하였다. 결과적으로 예상 평점 알고리즘의 경우 2.4초의 처리 속도와 평균 72.1퍼센트의 정확도를 얻었고, 게임 추천 알고리즘의 경우 75.187퍼센트의 정확도를 얻어 사용자에게 빠르고 정확한 추천 결과를 제시 할 수 있었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 사용자 평점 분석을 통한 게임 추천 시스템
4. 테스트 및 분석
5. 결론 및 향후 연구
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-530-000326572