메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이식 (국민대학교) 김동훈 (국민대학교) 조영훈 (국민대학교) 명준우 (국민대학교) 문다민 (국민대학교) 이재구 (국민대학교) 윤명근 (국민대학교)
저널정보
한국정보보호학회 정보보호학회지 정보보호학회지 제29권 제3호
발행연도
2019.6
수록면
6 - 13 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 머신러닝 기술이 비약적으로 발전하고 있다. 하드웨어 성능이 향상되고 머신러닝 활용 도구가 오픈소스로 사용 편리하게 개발되어 대중화됨으로써 보안데이터 분석 분야에서도 머신러닝을 이용한 기술 개발이 활발히 진행되고 있다. 본 논문에서는 보안 분야의 악성코드 데이터와 보안관제 로그 데이터를 주요 대상으로 머신러닝 기술을 적용할 때 고려되어야 할 기술적 사항들과 최신 연구 동향, 데이터 셋 특징, 그리고 머신러닝 기반의 보안데이터 분석 기술의 기대 효과 및 현재 기술의 한계점 등을 다루도록 한다.

목차

요약
Ⅰ. 서론
Ⅱ. 머신러닝 기반 보안데이터 분석
Ⅲ. 공개 보안데이터 종류와 특징
Ⅳ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000879733