메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Chen Jian (Hanyang University) Jechang Jeong (Hanyang University)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제24권 제4호
발행연도
2019.7
수록면
633 - 642 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근, 단일 이미지 초해상도 복원 기법(super-resolution)에서 컨볼루션 신경망 모델은 매우 성공적이다. 잔여 학습 기법은 컨볼루션 신경망 훈련의 안전성과 성능을 향상시킬 수 있다. 본 논문은 저해상도 입력 이미지에서 고해상도 목표 이미지로 비선형 매핑 학습을 위해 고밀도 스킵 연결(dense skip-connection)을 통한 재귀 잔차 구조를 이용한 단일 이미지 초해상도 복원 기법을 제안한다. 제안하는 단일 이미지 초해상도 복원 기법은 고밀도 스킵 연결 방식을 통해 재귀 잔차 학습 방법을 채택해서 깊은 신경망에서 학습이 어려운 문제를 완화하고 더 쉽게 최적화하기 위해 신경망 안에 불필요한 레이어를 제거한다. 제안하는 방법은 매우 깊은 신경망의 사라지는 변화도(vanishing gradient) 문제를 완화할 뿐만 아니고 낮은 복잡성으로 뛰어난 성능을 얻음으로써 단일 이미지 초해상도 복원 기법의 성능을 향상시킨다. 실험 결과를 통해 제안하는 알고리듬이 기존의 알고리듬 보다 결과가 더 우수함을 보인다.

목차

요약
Abstract
Ⅰ. Introduction
Ⅱ. Related work
Ⅲ. Proposed algorithm
Ⅳ. Experiment results
Ⅴ. Conclusion
참고문헌 (Reference)

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0