메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국스마트미디어학회 스마트미디어저널 스마트미디어저널 제8권 제3호
발행연도
2019.1
수록면
62 - 69 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
심전도 신호는 위조가 불가능하며 양쪽 손목에서 신호를 간편히 취득할 수 있는 장점이 있다. 본 논문에서는 심전도 신호의 방향 정보를 이용해 커플링 이미지를 생성하고, 이를 이용한 개인 인식 방법을 제안한다. 제안하는 커플링 이미지는 정방향 심전도 신호와 R-peak를 기준으로 회전된 역방향 심전도 신호를 이용해 생성하며, 생성한 커플링 이미지는 개인별로 고유한 패턴과 명암을 나타낸다. 또한 같은 주기의 심전도 신호 연산을 통해 R-peak 영역 데이터가 증가하여 개인 인식 성능 향상이 가능하다. 생성한 커플링 이미지는 제안한 합성곱 신경망을 이용해 패턴 및 명암에 대한 특징을 추출하며, 네트워크 속도 향상을 위해 다수의 풀링층을 사용해 데이터 크기를 축소한다. 실험은 47명의 공개된 심전도 데이터를 이용하며, 공개된 네트워크 중 top-5 성능이 상위권인 5개 네트워크와 제안한 네트워크를 이용해 비교 실험을 진행한다. 실험 결과 제안한 네트워크의 개인 인식 성능이 99.28%로 가장 높게 나타남에 따라, 제안한 커플링 이미지를 이용한 개인 인식 방법이 유효함을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0