메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kong Weiju (Seoul National University of Science & Technology) Shi Juntian (Seoul National University of Science & Technology) Sun Qingzhu (Seoul National University of Science & Technology) Chul-Ho Kim (Seoul National University of Science & Technology)
저널정보
한국자동차공학회 한국자동차공학회 추계학술대회 및 전시회 2019년 한국자동차공학회 추계학술대회 및 전시회
발행연도
2019.11
수록면
252 - 258 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the increasing energy and environmental problems, electric vehicles have developed rapidly in recent years because of their environmental protection and energy saving characteristics. As the power source of electric vehicles, electric power batteries and BMS are the core components of the whole vehicle. Abnormal temperature will have a huge impact on the performance and life of the power battery pack, and even safety problems such as thermal runaway may occur. Therefore, in order to ensure the normal operation of the battery car, an effective battery thermal management system is required.
This article uses 18650 lithium-ion battery for simulation experiments. According to the size of the battery pack, a liquid cooling device was developed to establish a simulation model of the power battery pack and the liquid cooling system. Based on the heat transfer characteristics of the battery and the liquid cooling theory, the temperature distribution under the liquid cooling of the battery was calculated and analyzed by using the computational fluid dynamics (analysis technique CFD). By properly setting the battery pack structure and the coolant flow rate to improve the heat dissipation performance, the battery pack maintains an efficient supply temperature as much as possible.

목차

Abstract
1. Introduction
2. Theoretical Basis
3. Research approach
4. Results & Disussion
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0