메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최성현 (Sangmyung Univerity) 허진 (Sangmyung Univerity)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제69권 제7호
발행연도
2020.7
수록면
978 - 984 (7page)
DOI
10.5370/KIEE.2020.69.7.978

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As the world is aware of the problem of greenhouse gas emissions, the trend of generating energy source has been changing from conventional fossil fuels to sustainable energy such as solar and wind. In order to reduce greenhouse gas emissions, the ratio of renewable energy sources should be increased. However, renewable energy sources highly depend on weather conditions and it has intermittent generation characteristics, thus embedding uncertainty and variability. As a result, it can cause variability and uncertainty in the power system, and that is why it is essential to have accurate forecasting technology of renewable energy to address this problem. We proposed a bagging model which is using an ensemble model as a base learner and what we set for the base learner is a XGBoost. Results showed that ensemble learner-based bagging models averagely have lower error compared to the bagging model using single model learner. Through the use of accurate forecasting technology, we will be able to reduce uncertainties in the power system and expect improved system reliability.

목차

Abstract
1. 서론
2. 본론
3. 예측 모형 모델링 과정
4. 예측 모형 평가 및 결과
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-560-000860534