메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Chao-Ming Huang (Kun Shan University) Yann-Chang Huang (Cheng Shiu University) Shin-Ju Chen (Kun Shan University) Sung-Pei Yang (Kun Shan University) Hsin-Jen Chen (Kun Shan University)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2023-ECCE Asia
발행연도
2023.5
수록면
562 - 567 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes an optimal ensemble method for short-term wind power forecasting. Ensemble forecasting method that incorporates several single models to improve prediction error has been widely applied in renewable energy forecasting. In this paper, a k-means method is used to assort wind power and wind speed data into five different types. Five different machine learning models are created and then used to produce initial prediction. The swarm intelligence methods, including particle swarm optimization (PSO), salp swarm algorithm (SSA) and whale optimization algorithm (WOA), are used to optimize the weight allocation for each single model. The final prediction is then generated using the weighted sum of each single prediction model. A wind power generation system that is located in Changhua, Taiwan is used to validate the proposed method. Testing results show that the proposed method provides more stable and accurate prediction than each single model. The proposed method also allows more accurate predictions compared to Least Absolute Shrinkage and Selection Operator (LASSO) and ridge regression methods.

목차

Abstract
I. INTRODUCTION
II. ENSEMBLE METHODS
III. THE PROPOSED ENSEMBLE METHOD
IV. SIMULATION RESULTS
V. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0