메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박지수 (한양대학교) 안길승 (한양대학교) 허선 (한양대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제46권 제4호
발행연도
2020.8
수록면
365 - 371 (7page)
DOI
10.7232/JKIIE.2020.46.4.365

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Class imbalanced dataset is common in real world and may degrade the performance of the classifier. To address this, oversampling method that artificially creates the samples of minority class is adopted but is known to be ineffective for the high-dimensional dataset because it generates the samples whose distribution is far different from that of existing samples. Novel oversampling methods based on the generative adversarial networks (GAN) have been recently developed, but generated samples may have different degrees of impact on the performance of the classifier. Therefore, more efficient method that can capture the characteristics of the generated samples and select those samples that will be used to train and improve the performance of the classifier is necessary. This study proposes a GAN-based new oversampling method which generates artificial samples based on the distribution of existing minority class samples and extracts only those which are effective to expand the realm of samples of minority class using the k-nearest neighbor. We show the proposed method outperforms existing methods with respect to F1-measure by several illustrative datasets.

목차

1. 서론
2. 생성적 적대 신경망
3. 제안 방법
4. 실험 및 결과
5. 결론
참고문헌

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-530-001096372