메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Minkyung Kim (Ajou University)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제49권 제11호
발행연도
2024.11
수록면
1,510 - 1,524 (15page)
DOI
10.7840/kics.2024.49.11.1510

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
To accurately detect and defend against ever-evolving cyber-attacks, network security technologies using artificial intelligence are continually advancing. This study analyzed the effective network intrusion detection methods based on the CICIDS2017 dataset, which contains various types of network attacks and has a highly imbalanced class distribution. To enhance detection performance for the minority classes of attacks, five oversampling techniques, including SMOTE, Borderline-SMOTE, ADASYN, GAN, and BiGAN, were applied to the underrepresented Bot and Infiltration classes. Additionally, the impact of feature selection on classification performance was evaluated by selecting features based on the feature importance scores from each machine learning model: Random Forest and XGBoost. The experimental results demonstrated that oversampling with SMOTE and ADASYN improved the recall scores of minority classes. Furthermore, applying feature selection reduced the model's complexity while maintaining or even improving its accuracy.

목차

ABSTRACT
Ⅰ. Introduction
Ⅱ. Data Preparation and Methodology
Ⅲ. Experimental Results and Analysis
Ⅳ. Conclusion and Future Work
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091113780