메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이동철 (한남대학교 멀티미디어공학과) 박병주 (한남대학교 멀티미디어공학과)
저널정보
한국인터넷방송통신학회 한국인터넷방송통신학회 논문지 한국인터넷방송통신학회 논문지 제19권 제2호
발행연도
2019.1
수록면
135 - 141 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근 강화 학습을 통해 게임을 학습하는 인공지능 에이전트를 만드는 연구가 활발히 진행되고 있다. 게임을 에이전트에게 학습 시킬 때 어떠한 딥러닝 활성화 함수를 사용하는지에 따라 그 학습 성능이 달라진다. 본 논문은 2D 슈팅 게임 환경에서 에이전트가 강화 학습을 통해 게임을 학습할 경우 어떤 활성화 함수가 최적의 결과를 얻는지를 비교 평가 한다. 이를 위해 비교 평가에서 사용할 메트릭을 정의하고 각 활성화 함수에 따른 메트릭 값을 학습 시간에 따라 그래프로 나타내었다. 그 결과 ELU (Exponential Linear Unit) 활성화 함수에 1.0으로 파라미터 값을 설정할 경우 게임의 보상 값이 다른 활성화 함수보다 평균적으로 높은 것을 알 수 있었고, 가장 낮은 보상 값을 가졌던 활성화 함수와의 차이는 23.6%였다.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0