메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이동철 (한남대학교 멀티미디어공학과)
저널정보
한국인터넷방송통신학회 한국인터넷방송통신학회 논문지 한국인터넷방송통신학회 논문지 제20권 제1호
발행연도
2020.1
수록면
171 - 176 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
강화 학습은 인공지능 에이전트가 비디오 게임을 학습할 때 가장 효과적으로 사용되는 방법이다. 강화 학습을 위해 여지껏 많은 알고리즘들이 제시되어 왔지만 알고리즘마다 적용되는 분야에 따라 다른 성능을 보여주었다. 본 논문은 최근 강화 학습에서 주로 사용되는 알고리즘들의 성능이 2D 레이싱 게임에서 어떻게 달라지는지 비교 평가한다. 이를 위해 평가에서 사용할 성능 메트릭을 정의하고 각 알고리즘에 따른 메트릭의 값을 그래프로 비교하였다. 그 결과 ACER (Actor Critic with Experience Replay)를 사용할 경우 게임의 보상이 다른 알고리즘보다 평균적으로 높은 것을 알 수 있었고, 보상 값이 가장 낮은 알고리즘과의 차이는 157%였다.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0