메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jong-Sul Moon (Korea University) HyunJun Jo (Korea University) Jae-Bok Song (Korea University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
1 - 5 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Manipulation of objects by a robot arm requires an understanding of the various properties of the object. The robot needs a lot of information for object manipulation, there are few algorithms to estimate such information simultaneously. In this study, we propose an object understanding network (OUNet) based on deep learning that simultaneously estimates three key properties for robot object manipulation: object state, contact position for object manipulation, and manipulation type. The object state means whether an openable object is open or closed. The contact position and manipulation type for manipulating objects means where and what the robot should do to change the object state. Usingthis information, it is expected that the robot will be able to select the appropriate manipulation for the current situation of the given object. Experiments were conducted to verify the performance of the OUNet, and it was shown that three key properties can be successfully detected.

목차

Abstract
1. INTRODUCTION
2. OBJECT UNDERSTANDING
3. EXPERIMENTS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001571132