메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이지현 (Kwangwoon University) 차영화 (Kwangwoon University) 박병준 (Kwangwoon University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제69권 제12호
발행연도
2020.12
수록면
1,943 - 1,949 (7page)
DOI
10.5370/KIEE.2020.69.12.1943

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We present a deep learning-based system for generating images, such as pictures of electricity meters, in which numbers and letters play an important role. A large amount of image data is often required to build a deep learning-based system for image recognition, so it would be useful to have a system that can automatically generate realistic images. GANs can be used for this purpose, but there are some hurdles to overcome for GANs to create realistic images in which texts are embedded. Most of existing approaches focus on generating either the textual images or the non-textual ones only, not the ones where the textual part is embedded in a small area while still being clearly identifiable. In order to solve this problem, we propose a deep learning-based approach that attempts to learn textual images and non-textual ones independently before generating a set of complete images combined from the learned results. Also, we demonstrate the strengths of the proposed system by providing some empirical results on the electricity meter image data.

목차

Abstract
1. 서론
2. 관련 연구
3. 제안하는 시스템
4. 시스템 평가
5. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-560-000073280