메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Uttam Khatri (Chosun University) Goo-Rak Kwon (Chosun University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.10 No.1
발행연도
2021.2
수록면
1 - 9 (9page)
DOI
10.5573/IEIESPC.2021.10.1.001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
sMRI measurement is important for characterizing the pathology of Alzheimer’s disease (AD), mild cognitive impairment (MCI), and healthy control (HC). To date, several imaging and non-imaging bio-markers for AD and MCI have been identified. Cortical thickness, hippocampal atrophy, apolipoprotein E gene ε4 (APoE ε4), and cerebrospinal fluid (CSF) biomarkers are believed to be the major indicators for AD and MCI. In this paper, these features have been utilized successfully to identify AD patients from controls. These biomarkers have mostly been used separately, so far. The full possibilities of combining sMRI, cortical thickness, hippocampal volume, APoE ε4, and CSF biomarkers for AD diagnosis might thus yet lead to optimal analysis. Therefore, we combined hippocampal volume, cortical thickness, APoE ε4, and CSF markers to enhance diagnostic classification of AD. For 53 clinically diagnosed AD patients, 103 patients with mild cognitive impairment, and 61 cognitively healthy controls, we obtained cortical thickness, hippocampal volume, APoE ε4, and CSF biomarkers. These four measures were first applied separately and were then combined to predict AD in support vector machine–recursive feature elimination (SVM-RFE) to select the optimal features. They were fed into different classifiers (naïve Bayes, k-nearest neighbors, and SVM), and experimental results show that the combination of the different biomarkers performs well, as compared to using separate features individually.

목차

Abstract
1. Introduction
2. Material and Method
3. Results and Discussion
4. Conclusion
References

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0