메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이종학 (부산대학교) 김경수 (부산대학교) 김윤재 (부산대학교) 이장명 (부산대학교)
저널정보
한국로봇학회(논문지) 로봇학회 논문지 로봇학회 논문지 제16권 제2호
발행연도
2021.6
수록면
137 - 146 (10page)
DOI
10.7746/jkros.2021.16.2.137

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
When controlling manipulator, degree of freedom is lost in singularity so specific joint velocity does not propagate to the end effector. In addition, control problem occurs because jacobian inverse matrix can not be calculated. To avoid singularity, we apply Deep Deterministic Policy Gradient(DDPG), algorithm of reinforcement learning that rewards behavior according to actions then determines high-reward actions in simulation. DDPG uses off-policy that uses ϵ-greedy policy for selecting action of current time step and greed policy for the next step. In the simulation, learning is given by negative reward when moving near singulairty, and positive reward when moving away from the singularity and moving to target point. The reward equation consists of distance to target point and singularity, manipulability, and arrival flag. Dual arm manipulators hold long rod at the same time and conduct experiments to avoid singularity by simulated path. In the learning process, if object to be avoided is set as a space rather than point, it is expected that avoidance of obstacles will be possible in future research.

목차

Abstract
1. 서론
2. 양팔 매니퓰레이터 해석
3. 자코비안과 특이점
4. DDPG 알고리즘
5. 문제 상황 및 시뮬레이션 시스템 구성
6. 시뮬레이션 및 실험
7. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-559-001702936