메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김정희 (고려대학교) 강필성 (고려대학교)
저널정보
대한산업공학회 대한산업공학회 추계학술대회 논문집 2021년 대한산업공학회 추계학술대회
발행연도
2021.11
수록면
1,840 - 1,859 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Recently, the demand for artificial intelligence-based voice services, identifying and appropriately responding to user needs based on voice, is increasing. In particular, technology for recognizing emotions, which is non-verbal information of human voice, is receiving significant attention to improve the quality of voice services. Therefore, speech emotion recognition models based on deep learning is actively studied with rich English data, and a multi-modal emotion recognition framework with a speech recognition module has been proposed to utilize both voice and text information. However, the framework with speech recognition module has a disadvantage in an actual environment where ambient noise exists. The performance of the framework decreases along with the decrease of the speech recognition rate. In addition, it is challenging to apply deep learning-based models to Korean emotion recognition because, unlike English, emotion data is not abundant. To address the drawback of the framework, we propose a consistency regularization learning methodology that can reflect the difference between the content of speech and the text extracted from the speech recognition module in the model. We also adapt pre-trained models with self-supervised way such as Wav2vec 2.0 and HanBERT to the framework, considering limited Korean emotion data. Our experimental results show that the framework with pre-trained models yields better performance than a model trained with only speech on Korean multi-modal emotion dataset. The proposed learning methodology can minimize the performance degradation with poor performing speech recognition modules.

목차

Abstract
1. 서론
2. 관련 연구
3. 제안 방법론
4. 실험 및 결과
5. 결론
6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0