메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
손귀영 (세종대학교) 권순일 (세종대학교) 백성욱 (세종대학교)
저널정보
한국차세대컴퓨팅학회 한국차세대컴퓨팅학회 논문지 한국차세대컴퓨팅학회 논문지 제13권 제6호
발행연도
2017.1
수록면
96 - 105 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 실제 응급상황센터에 접수된 신고전화의 음성분석을 통하여 발화자의 연령을 분류하고자 한다. 2가지 발화행태적 특징요소인 무성휴지(Silent Pause), 대화반응시간(Turn-taking latency)를 활용하여 성인과 노인을 분류할 수 있는 특징에 대한 분류기준을 선정하고, 이를 기계학습 분류기인 SVM(Support Vector Machine)을 활용하여 분류정확도를 확인하였다. 먼저, 응급상황센터의 실제 신고전화에 대하여 발화행태적 특징요소를 기반으로 청취분석을 통하여 발생길이에 대하여 성인과 노인사이에 통계적으로 유의하다는 것을 확인하였다(p<0.05). 또한, 성인과 노인 각 100개, 총 200개의 음성데이터를 5차 교차검증방법을 사용하여 기계학습을 실행한 결과, 2가지의 발화행태를 모두 사용한 복합기준(무성휴지+대화반응시간)일 경우, 70%의 가장 높은 분류정확도를 확인할 수 있었다. 본 연구의 결과는 음성에 기반한 연령을 분류하는 연구에 있어서, 기존의 음성정보와 더불어, 새로운 발화행태적 특징요소와의 결합을 통하여 연령구분을 가능하게 하는 새로운 방법으로 제안할 수 있을 것이다. 또한, 향후 음성기반 상황판단 시스템 기술 개발에 있어서 기초자료로 적용이 가능하며, 이를 통하여 신속한연령분류를 판단을 통한 상황대처가 가능하도록 하는 데에 기여할 수 있을 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0