메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이혜용 (이화여자대학교) 이향 (메이슨코리아엘엘씨)
저널정보
한국현대언어학회 언어연구 언어연구 제31권 제2호
발행연도
2015.1
수록면
451 - 478 (28page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Lee, HyeYong․Lee, Hyang. 2015. A Basic Study on the Development of Grading Scale Description in Korean Speaking Assessment—Focusing on the Functional Phase of Speech Sample Analysis Using Discourse Analysis. The Journal of Studies in Language 31.2, 451-478. Most grading scales of Korean language proficiency tests are based on existing grading scales that are not empirically verified. The purpose of this study is to develop an empirically verified scale descriptors. The ‘Performance data-driven approach’ that is suggested by Fulcher(1987) was used to develop the detailed description of characteristics for each level of performance. This study is focused on functional phase of speech samples analysis(coding data) to create explanatory categories of discourse skill into which individual observations of speech phenomena can be scored. The speech samples that were collected through this study demonstrated stages of speech that can be a foundation of a grading scale. The data used in the study was collected from 22 native speakers of Korean. Speech samples were recorded from simulated speaking test using REQUEST task, and transcribed for analysis. The transcript was analyzed using DA (discourse analysis). The result showed that REQUEST task needs to go through five functional phases in actual communication. Furthermore, this study found specific and detailed explanatory categories of discourse competence based on the actual native speaker’s speech data. Such findings are expected to contribute to the development of more valid and reliable speaking assessment. (Ewha Womans University․George Mason University, Korea)

목차

등록된 정보가 없습니다.

참고문헌 (53)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0