메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Judith Nkechinyere Njoku (금오공대) Angela C. Caliwag (금오공대) Wansu Lim (금오공대) Sangho Kim (금오공대) Han-Jeong Hwang (고려대) Jin-Woo Jeong (서울과기대)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제47권 제1호
발행연도
2022.1
수록면
79 - 87 (9page)
DOI
10.7840/kics.2022.47.1.79

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Multimodal emotion recognition is a robust and reliable method as it utilizes multimodal data for more comprehensive representation of emotions. Data fusion is a key step in multimodal emotion recognition, because the accuracy of the recognition model mostly depends on how the different modalities are combined. The goal of this paper is to compare the performances of deep learning (DL) based models for the task of data fusion and multimodal emotion recognition. The contributions of this paper are two folds: 1) We introduce three DL models for multimodal fusion and classification: early fusion, hybrid fusion, and multi-task learning. 2) We systematically compare the performance of these models on three multimodal datasets. Our experimental results demonstrate that multi-task learning achieves the best results across all modalities; 75.41%, 68.33%, and 78.75% for classification of three emotional states using the combinations of audio-visual, EEG-audio, and EEG-visual data, respectively.

목차

ABSTRACT
Ⅰ. Introduction
Ⅱ. Related Works
Ⅲ. Emotion Recognition Using Data Fusion
Ⅳ. Experimental Settings
Ⅴ. Experimental Results
Ⅵ. Conclusion and Future Works
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-567-000155719