메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seong-Woong Kim (Inha University) Dong-Wan Choi (Inha University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.16 No.1
발행연도
2022.3
수록면
52 - 62 (11page)
DOI
10.5626/JCSE.2022.16.1.52

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Federated learning (FL) is a new machine learning paradigm, where multiple clients learn their local models to collaboratively integrate into a single global model. Unlike centralized learning, the global model being integrated cannot be tested in FL as the server does not collect any data samples; further, the global model is often sent back and immediately applied to clients even in the middle of training such as Gboard. Therefore, if the performance of the global model is not stable, which is, unfortunately, the case in many FL scenarios with non-IID data, clients can be provided with an inaccurate model. This paper explores the main reason for this training instability of FL, that is, what we call temporary imbalance that happens across rounds, leading to loss of knowledge from previous rounds. To solve this problem, we propose a dataset condensation method to summarize the local data for each client without compromising on privacy. The condensed data are transmitted to the server with the local model and utilized by the server to ensure stable and consistent performance of the global model. Experimental results show that the global model not only achieves training stability but also exhibits a fast convergence speed.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. ANALYSIS ON TRAINING INSTABILITY OF FEDERATED LEARNING
IV. METHOD
V. EXPERIEMENTS
VI. CONCLUSION
REFERENCES

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0