메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
문지현 (서울대학교) 김선희 (서울대학교) 김명주 (서울대학교) 류지원 (분당서울대학교병원) 김세중 (서울대학교) 정민화 (서울대학교)
저널정보
한국음성학회 말소리와 음성과학 말소리와 음성과학 제14권 제4호
발행연도
2022.12
수록면
45 - 56 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 만성콩팥병 환자의 음성을 사용하여 질병을 자동으로 진단하고 중증도를 예측하는 최적의 방법론을 제안한다. 만성콩팥병 환자는 호흡계 근력의 약화와 성대 부종 등으로 인해 음성이 변화하게 된다. 만성콩팥병 환자의 음성을 음성학적으로 분석한 선행 연구는 존재했으나, 환자의 음성을 분류하는 연구는 진행된 바가 없다. 본 논문에서는 모음연장발화, 유성음 문장 발화, 일반 문장 발화의 발화 목록과, 수제 특징 집합, eGeMAPS, CNN 추출 특징의 특징 집합, SVM, XGBoost의 머신러닝 분류기를 사용하여 만성콩팥병 환자의 음성을 분류하였다. 총 3시간 26
분 25초 분량의 1,523개 발화가 실험에 사용되었다. 그 결과, 질병을 자동으로 진단하는 데에는 0.93, 중증도를 예측하는 3분류 문제에서는 0.89, 5분류 문제에서는 0.84의 F1-score가 나타났고, 모든 과제에서 일반 문장 발화, 수제 특징 집합, XGBoost의 조합을 사용했을 때 가장 높은 성능이 나타났다. 이는 만성콩팥병 음성 자동 분류에는 화자의 발화 특성을 모두 반영할 수 있는 일반 문장 발화와 거기로부터 추출한 적절한 특징 집합이 효과적임을 시사한다.

목차

Abstract
1. 서론
2. 방법론
3. 실험
4. 실험 결과 및 논의
5. 결론
References
국문초록
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-700-000338539