메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
백원경 (서울시립대학교) 이용석 ((주)신한항업) 박숭환 (한국해양과학기술원) 정형섭 (서울시립대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제37권 제6호
발행연도
2021.12
수록면
1,965 - 1,974 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
위성 원격탐사 기법은 산림 모니터링에 적극적으로 활용될 수 있으며 우리나라 독자 운영 위성인 다목적실용위성을 활용하였을 때 특히 의미 깊다. 최근 들어 위성 원격탐사 자료에 머신러닝 기법을 적용함으로써산림 모니터링을 수행하는 연구가 다수 이루어지고 있다. 머신러닝 기법을 통하여 제작된 산림모니터링 정보는 기존 산림 모니터링 방법의 효율성을 향상시키는 데에 활용할 수 있다. 머신러닝 기법의 경우 관심 지역과활용 데이터의 특징에 따라 분류 정확도가 크게 달라지므로 다양한 모델을 적용함으로써 가장 효과적인 분류결과를 도출하는 것이 매우 중요하다. 본 연구에서는 우리나라 삼척 지역에 대해 심층신경망을 적용함으로써인공림과 자연림의 분류 성능을 확인하였다. 그 결과 픽셀 정확도가 약 0.857, F1 Score가 자연림과 인공림에 대해 각각 약 0.917과 0.433로 확인되었다. F1 score를 보았을 때 인공림의 분류 성능이 절대적으로는 낮은 수준을나타냈다. 하지만 기존의 인공림과 자연림 분류 성능에 대해 F1 score를 기준으로 약 0.06, 그리고 0.10 향상된성능을 확인할 수 있었다. 이러한 결과를 바탕으로 볼 때에 합성곱신경망 기반의 추가적인 모델을 적용함으로써 보다 적절한 모델을 분석할 필요가 있다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0