메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신석용 (광운대학교 플라즈마바이오디스플레이학과 석사과정) 이상훈 (광운대학교) 한현호 (울산대학교)
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제12권 제10호
발행연도
2021.10
수록면
55 - 61 (7page)
DOI
https://doi.org/10.15207/JKCS.2021.12.10.055

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 정밀한 semantic segmentation을 위해 강조 기법을 활용한 DeepLabv3+ 기반의 인코더-디코더 모델을 제안하였다. DeepLabv3+는 딥러닝 기반 semantic segmentation 방법이며 자율주행 자동차, 적외선 이미지 분석 등의 응용 분야에서 주로 사용된다. 기존 DeepLabv3+는 디코더 부분에서 인코더의 중간 특징맵 활용이 적어 복원 과정에서 손실이 발생한다. 이러한 복원 손실은 분할 정확도를 감소시키는 문제를 초래한다. 따라서 제안하는 방법은 하나의 중간 특징맵을 추가로 활용하여 복원 손실을 최소화하였다. 또한, 추가 중간 특징맵을 효과적으로 활용하기 위해 작은 크기의 특징맵부터 계층적으로 융합하였다. 마지막으로, 디코더에 강조 기법을 적용하여 디코더의 중간 특징맵 융합 능력을 극대화하였다. 본 논문은 거리 영상 분할연구에 공통으로 사용되는 Cityscapes 데이터셋에서 제안하는 방법을 평가하였다. 실험 결과는 제안하는 방법이 기존 DeepLabv3+와 비교하여 향상된 분할 결과를 보였다. 이를 통해 제안하는 방법은 높은 정확도가 필요한 응용 분야에서 활용될 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0