메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안다영 (성균관대학교) 박세영 (성균관대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제35권 제2호
발행연도
2022.4
수록면
229 - 250 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
포트폴리오 최적화 이론의 초석인 Markowitz의 평균-분산 포트폴리오 모형 (1952)이 발표된 이후로 많은 분야에서 포트폴리오 최적화에 대한 다양한 연구가 진행되었다. 기존의 평균-분산 포트폴리오 모형은 주로 목적함수나 제약식에 비선형 볼록 형태를 포함한다. 이를 Dantzig의 선형계획법을 적용하여 선형으로 변환시켜 알고리즘 계산 시간을 효율적으로 감소시켰다. 또한 시계열 데이터 특성을 반영하여 시간에 따른 가중치를 고려하는 가우시안 커널 가중치 공분산을 제안하였다. 여기에 일정 부분은 벤치마크에 투자하고 나머지는 포트폴리오 최적화 모형으로 제안된 자산들에 투자하는 퍼터베이션 방법을 적용하여 평균 수익률과 위험도를 목적에 맞게 조절하도록 하였다. 또한, 본 논문에서는 안정적이면서도 적은 자산을 보유하게 포트폴리오를 구성하여 관리비용(management costs)과 거래비용(transaction costs)를 낮출 수 있는 Dantzig-type 퍼터베이션 포트폴리오 모형을 제안하였다. 제안된 모형의 성능은 5개의 실제 데이터 세트로 벤치마크 포트폴리오와 비교 분석하여 평가하였다. 최종적으로 제안한 최적화 모형은 벤치마크보다 높은 기대수익률이나 낮은 위험도를 갖는 포트폴리오를 구성하여 퍼터베이션 목적을 만족하며, 투자한 자산의 수와 시간에 따른 자산 구성 변화를 일정 수준 이하로 조절하는 희소하며 안정적인 결과를 얻었다.

목차

Abstract
1. 서론
2. 포트폴리오 선택과 퍼터베이션 방법
3. Dantzig-type 위험을 사용한 포트폴리오 최적화 모형
4. 금융 데이터를 활용한 분석
5. 결론
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001441108