메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이보희 (성균관대학교) 김광수 (성균관대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제29권 제2호
발행연도
2023.6
수록면
115 - 127 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
동영상 안정화 기술은 최근 1인 미디어 시장이 거대화됨에 따라 그 중요성이 점점 커지고 있는 카메라 기술 중 하나이다. 딥러닝 기반의 기존 방법들에서는 안정화 전/후 동영상 데이터 쌍을 사용하였으나 동영상의 특성상 동기화된 안정화 전/후 데이터를 만드는 것은 많은 시간과 노력이 필요하다. 최근 이러한 문제를 완화하기 위하여 안정화 전 데이터만을 사용하는 비지도 학습 방법이 제시되고 있다. 본 논문에서는 비지도 학습 방법의 하나인 Convolutional Autoencoder 구조를 사용하여 안정화 전/후 동영상 데이터 쌍 없이 안정화 전 영상만으로 안정화 궤적을 학습하는 네트워크 구조를 제안한다. 네트워크 입력 및 출력으로 옵티컬 플로우를 사용하고 네트워크 경량화 및 노이즈 최소화를 위해 옵티컬 플로우를 Grid 단위로 맵핑하여 사용했다. 또한 비지도 학습 방법으로 안정화된 궤적을 생성하기 위해 옵티컬 플로우를 부드럽게 만드는 손실함수를 정의하였고 결과 비교를 통해 손실함수의 의도대로 부드러운 궤적을 생성하도록 네트워크가 학습되었음을 확인했다.

목차

1. 개요
2. 관련 연구
3. 제안 방법
4. 실험 및 결과
5. 결론
참고문헌(References)
Abstract

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-003-001752204