메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
심기천 (아주대학교) 김강석 (아주대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제24권 제8호
발행연도
2023.8
수록면
1,929 - 1,936 (8page)
DOI
10.9728/dcs.2023.24.8.1929

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 내부자의 행위를 기록한 시계열 기반 로그 데이터를 사용하여 내부자 이상 행위 탐지 방법을 연구한다. LSTM 기반 잡음 제거 오토인코더(LSTM-DAE) 모델을 개발하고, 이를 활용하여 유용한 시퀀스 정보를 담고 있는 잠재 벡터를 추출하였다. 그리고 추출한 잠재 벡터를 이상 탐지 알고리즘인 LOF와 IF에 입력하여 내부자 이상 행위 탐지 방법의 성능을 평가하였다. 여러가지 성능 평가 지표를 사용하여 모델의 실효성을 검증한 결과, 5차원인 잠재 벡터를 사용하면 시퀀스 길이가 짧을수록 재현율이 높게 나온 것을 확인할 수 있었고, 7차원인 잠재 벡터를 사용하면 시퀀스 길이에 상관없이 재현율이 높게 나온 것을 확인할 수 있었다. 또한 비정상 행위 샘플 수를 일정하게 유지하면서 정상 행위 샘플 수가 증가할수록 정밀도가 하락하는 것을 확인할 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 연구 방법
Ⅳ. 실험 결과 및 분석
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0