메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박중현 (선문대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제26권 제8호
발행연도
2023.8
수록면
1,003 - 1,012 (10page)
DOI
10.9717/kmms.2023.26.8.1003

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the past, research related to corporate bankruptcy has primarily conducted empirical analyses through bankruptcy prediction models using financial ratios. However, with the advancement of ICT technology, there has been a growing trend in applying artificial intelligence. In this study, both traditional corporate bankruptcy prediction methodologies and machine learning and deep learning methodologies from the field of deep learning were applied to present the results of corporate bankruptcy prediction models and their predictive power. The dataset used included corporate characteristics, including financial ratios and non-financial information, as well as macroeconomic indicators to account for economic conditions. Five models, SVM, RF, DNN, CNN, and LSTM, were designated, and the model reliability and prediction accuracy for each model were analyzed. The LSTM model demonstrated superior performance and the highest prediction accuracy among the models. When comparing different approaches using only financial ratios (Set 1), using financial ratios and corporate characteristics together (Set 2), and incorporating financial ratios, corporate characteristics, and macroeconomic indicators (Set 3), which included all of these factors, consistently exhibited the highest model reliability and prediction accuracy.

목차

ABSTRACT
1. 서론
2. 관련 연구
3. 기업부도 연구방법
4. 실증분석 및 연구결과
5. 결론
REFERENCE

참고문헌 (19)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-004-002035678