메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장지연 (Inha University) 김인수 (Inha University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제72권 제9호
발행연도
2023.9
수록면
1,018 - 1,028 (11page)
DOI
10.5370/KIEE.2023.72.9.1018

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In power systems, faults, such as ground faults and short circuits, and non-fault disturbances, such as large load fluctuations and unbalances, occur frequently. However, the power system responses to power faults and non-fault disturbances are different. Therefore, it is essential to accurately distinguish between faults and non-fault disturbances in power systems. Previous studies have collected large-scale data by monitoring real-time parameters of the power system and detecting the occurrence of power system faults. However, this study does not focus only on diagnosing power system faults but also on accurately distinguishing between faults and non-faults disturbances and uses various classification models to train the data and evaluate and analyze the prediction results. Collecting power system parameters when faults and non-faults disturbances occur is not easy. Therefore, this study used DIgSILENT PowerFactory software to simulate faults and non-faults disturbances in the power system and collected 120 small data sets. The data collected for the 120 cases consists of various metrics such as voltage, current, frequency, rotor speed, and HVDC parameters. This study used seven classification models for training and prediction: decision tree, gradient boosting classifier, k-nearest neighbors, logistic regression, naive Bayes classification, and random forest regression. In addition, this study introduced an importance-based data reorganization method to improve the performance of the best-performing classification model and analyzed its effectiveness.

목차

Abstract
1. 서론
2. 본론
3. 사례 연구
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-560-002038729