메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jianqun Zhang (Tongji University) Qing Zhang (Tongji University) Wenzong Feng (Tongji University) Yuantao Sun (Tongji University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
712 - 717 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The machine learning-based intelligent fault diagnosis method has the merits of fast response speed and automation, but requires many fault samples which are difficult to obtain. For rolling bearings in engineering, the normal samples collected are sufficient, while the fault samples are scarce. Because the operating time of the equipment in a normal state is much longer than the fault time. This paper proposes a two-stage rolling bearing fault diagnosis method that combines the advantages of machine learning and signal processing. In the first stage, the support vector data description optimized by a multi-objective grasshopper optimization algorithm is used to construct a fault detection model to quickly detect anomaly samples. In the second stage, multi-symplectic geometry mode decomposition is used to analyze anomaly state signals to determine the fault type. The analysis of the bearing dataset shows that the proposed fault diagnosis method can accurately detect early faults and identify fault types, which is robust to the number of normal samples participating in training. Compared with existing detection methods, our method can identify the fault point earlier. The above results demonstrate that the proposed method is expected to practical rolling bearing fault diagnosis.

목차

Abstract
1. INTRODUCTION
2. BACKGROUND KNOWLEDGE
3. THE PROPOSED METHOD
4. EXPERIMENTAL ANALYSIS
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088264808