메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Antony John Nyongesa (Korea Maritime & Ocean Engineering University) Jeong Kuk Kim (Korea Maritime & Ocean Engineering University) Won-Ju Lee (Korea Maritime & Ocean University)
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제47권 제6호
발행연도
2023.12
수록면
303 - 308 (6page)
DOI
10.5916/jamet.2023.47.6.303

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Natural gas (NG) is a potential alternative fuel for a carbon-free transition. Currently, NG combustion in marine two-stroke engines is achieved using two dual fuel concepts namely, the high-pressure injection (HPDF) and low-pressure injection (LPDF). The LPDF engine concept can meet the Tier III emission regulations without any after-treatment devices. However, under low load conditions, it exhibits poor combustion characteristics and higher CO and HC emissions. The quality of the in-cylinder NG/air mixture is crucial for the premixed combustion nature of the LPDF concept. This study numerically evaluates the influence of adjustable-sized scavenge ports on the NG stratification in a large-bore marine two-stroke NG/diesel, dual-fuel engine. Originally, the engine port height was 211mm; the size was reduced to various port heights to analyze its influence on the NG/air stratification. The results showed a significant improvement in the in-cylinder dynamic, mixing, and turbulence properties. The swirl ratio, turbulence kinetic energy, and vorticity magnitudes were increased to a maximum of 16.56, 37.027, and 17.04%, respectively. However, owing to the reduced scavenge port size, the trapped air mass in the cylinder was reduced slightly by 2.05%. This study provides a reasonable approach to improve the cylinder mixture formation to improve combustion efficiency in marine low-pressure gas dual-fuel engines.

목차

Abstract
1. Introduction
2. Model Description
3. Results
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0