메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최진원 (서울과학기술대학) 서찬호 (서울과학기술대학) 최준혁 (서울과학기술대학) 최성록 (서울과학기술대학교)
저널정보
한국로봇학회(논문지) 로봇학회 논문지 로봇학회 논문지 제19권 제1호
발행연도
2024.3
수록면
98 - 105 (8page)
DOI
10.7746/jkros.2024.19.1.098

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a new approach with a distance-based regularization to the entropy applied to the NBV (Next-Best-View) selection with NeRF (Neural Radiance Fields). 3D reconstruction requires images from various viewpoints, and selecting where to capture these images is a highly complex problem. In a recent work, image acquisition was derived using NeRF’s ray-based uncertainty. While this work was effective for evaluating candidate viewpoints at fixed distances from a camera to an object, it is limited when dealing with a range of candidate viewpoints at various distances, because it tends to favor selecting viewpoints at closer distances. Acquiring images from nearby viewpoints is beneficial for capturing surface details. However, with the limited number of images, its image selection is less overlapped and less frequently observed, so its reconstructed result is sensitive to noise and contains undesired artifacts. We propose a method that incorporates distance-based regularization into entropy, allowing us to acquire images at distances conducive to capturing both surface details without undesired noise and artifacts. Our experiments with synthetic images demonstrated that NeRF models with the proposed distance and entropy-based criteria achieved around 50 percent fewer reconstruction errors than the recent work.

목차

Abstract
1. 서론
2. 배경 이론
3. 거리기반 엔트로피를 이용한 NBV
4. 실험 및 평가
5. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089378589