메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강현석 (서울과학기술대학교) 박구만 (서울과학기술대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제29권 제4호
발행연도
2024.7
수록면
452 - 463 (12page)
DOI
10.5909/JBE.2024.29.4.452

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
전통적인 3D 비전 연구에서 가장 대표적인 3D 재구성 방법은 다중 시점 기하학을 이용하여 복원하는 것이었다. 다중 시점 기하학 방법은 대상의 특징점을 검출해야 하므로 특징이 명확한 물체가 있어야 복원이 원활하며, 많은 수의 이미지가 필요하다. 최근 딥러닝의 발전은 이러한 제약조건들을 해결하는 방법들을 제시하고 있다. 특히 3D 재구성에서는 NeRF가 발표된 이후 빠르게 발전하고 있다. 하지만 NeRF 방식은 주어진 카메라 시점을 이용하여 3D를 학습하는 방식이기 때문에, 가려진 부분에 대한 복원은 깨끗하게 이뤄지지 않는다. 본 논문은 이미지 인페인팅 기법을 이용하여 대상의 가려진 부분을 2D 이미지상에서 복원한 뒤, NeRF 학습 과정에서 가려진 부분을 3D로 복원하는 방법을 제안한다. 이를 통해 기존 가려진 이미지를 사용하여 네트워크를 학습했을 때보다 약 46%의 PSNR 성능 향상을 이루었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안하는 시스템
Ⅳ. 실험 및 분석
Ⅴ. 결론
참고문헌 (References)

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0