메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
송명재 (경상국립대학교) 최은주 (한국항공우주연구원) 김병수 (경상국립대학교) 문용호 (경상국립대학교)
저널정보
항공우주시스템공학회 항공우주시스템공학회지 항공우주시스템공학회지 제18권 제3호
발행연도
2024.6
수록면
41 - 47 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근에 무인항공기의 실용화 및 사업화가 추진됨에 따라 무인항공기의 안전성 확보에 관한 관심이 증가하고 있다. 무인항공기의 사고는 재산 및 인명 피해를 발생시키기 때문에 사고를 예방할 수 있는 기술의 개발은 중요하다. 이러한 이유로 AutoEncoder 모델을 이용한 비정상 비행 상태 탐지 기법이 개발되었다. 그러나 기존 탐지 기법은 성능과 실시간 처리 측면에서 한계를 지닌다. 본 논문에서는 U-Net 기반 비정상 비행 탐지 기법을 제안한다. 제안하는 기법에서는 U-Net 모델에서 얻어지는 재구성 오차에 대한 마할라노비스 거리 증가량에 기반하여 비정상 비행이 탐지된다. 모의실험을 통해 제안 탐지 기법이 기존 탐지 기법에 비해 탐지 성능이 우수하며 온보드 환경에서 실시간으로 구동될 수 있음을 알 수 있다.

목차

Abstract
초록
1. 서론
2. 기존 딥러닝 기반 비정상 비행 탐지 기법
3. 제안하는 비정상 비행 탐지 기법
4. 실험 및 결과
5. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090093702