메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jaeheon Lee (Hanyang University) Hwani Hwang (Hanyang University) Taesoon Jeong (Hanyang University) Dukyong Kim (Hanyang University) Jeongbin Ahn (Hanyang University) Gyuchan Lee (Hanyang University) Seung Hwan Lee (Hanyang University)
저널정보
대한용접·접합학회 대한용접·접합학회지 大韓熔接·接合學會誌 第42卷 第4號
발행연도
2024.8
수록면
333 - 344 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The quality of welds during welding processes significantly affects the performance and the reliability of the final products. Therefore, to guarantee a high quality of the products, technologies that utilize time-series data measured by various sensors for monitoring the welding processes are required. Because the time-series data measured during the welding processes exhibit nonlinear and nonstationary characteristics, deep learning techniques, which can automatically learn the features of nonlinear and nonstationary signals through deep network structures, have recently gained recognition as a new monitoring method. Therefore, in this review, recent research that applied deep learning models based on time-series data measured during welding processes to monitor welding processes are introduced. In addition, the types of time-series data and deep learning model structures that are predominantly used to monitor the welding processes, such as predicting the penetration states and identifying the welding defects are discussed. Lastly, based on the research cases discussed herein, future research directions and the prospects of deep learning-based welding process monitoring technology that uses time-series data are discussed.

목차

Abstract
1. Introduction
2. Methods for Analyzing Deep Learning-Based Time-Series Data
3. Deep Learning-Based Welding Process Monitoring Research
4. Conclusion
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090262770