메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kidong Lee (Portland State University) Sung Yi (Portland State University) Soongkeun Hyun (Inha University) Cheolhee Kim (Portland State University)
저널정보
대한용접·접합학회 대한용접·접합학회지 大韓熔接·接合學會誌 第39卷 第1號
발행연도
2021.2
수록면
10 - 19 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
During machine learning algorithms, deep learning refers to a neural network containing multiple hidden layers. Welding research based upon deep learning has been increasing due to advances in algorithms and computer hardwares. Among the deep learning algorithms, the convolutional neural network (CNN) has recently received the spotlight for performing classification or regression based on image input. CNNs enables end-to-end learning without feature extraction and in-situ estimation of the process outputs. In this paper, 18 recent papers were reviewed to investigate how to apply CNN models to welding. The papers was classified into 5 groups: four for supervised learning models and one for unsupervised learning models. The classification of supervised learning groups was based on the application of transfer learning and data augmentation. For each paper, the structure and performance of its CNN model were described, and also its application in welding was explained.

목차

Abstract
1. Introduction
2. CNN Structure and Learning Methods
3. Supervised learning with training from scratch
4. Supervised learning with transfer learning
6. Summary and Outlook
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0