메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김태성 (전남대학교) 정영선 (전남대학교) 최효린 (전남대학교) 정영선 (전남대학교)
저널정보
한국스마트미디어학회 스마트미디어저널 스마트미디어저널 제13권 제4호
발행연도
2024.4
수록면
23 - 32 (10page)
DOI
https://dx.doi.org/10.30693/SMJ.2024.13.4.23

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
대형 화재 발생과 그로 인한 피해가 증가하고 있는 상황에서, 화재감지 시설에 대한 신뢰는 낮아지고 있다. 현재 널리 사용되는 화학 화재감지기는 오경보가 빈번하게 발생하며, 비디오 기반 딥러닝 화재감지는 시간과 비용이 많이 소요되는 단점이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 오토인코더 모델을 활용한 화재감지 모델을 제안한다. 오경보를 최소화하고 신속 정확한 화재감지를 목표로 한다. 제안된 모델은 오토인코더 방법론을 이용해 화재 데이터 없이 정상 데이터만으로 모델을 학습시킬 수 있어 새로운 환경에 적용이 용이하다. 5가지 센서 데이터를 종합적으로 반영하여 화재를 신속하고 정확히 감지할 수 있다. 다양한 초모수 조합을 실험하여 최적의 초모수를 선정하였으며, 오경보 문제를 줄일 수 있는 화재 시점 판단 규칙을 제안하였다. 제안한 모델로 화재감지 실험을 진행한 결과, 14개의 시나리오 중 13개의 시나리오에서 오경보 문제가 발생하지 않았고, 동일한 데이터로 임계치 비교 알고리즘과 결과를 비교하였을 때 더 빠른 화재 감지 성능을 보였다. 이를 통해 화재로 인한 피해를 최소화하고, 화재감지 시설의 신뢰도를 높일 수 있을 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0