메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김지훈 (한경국립대학교) 이창준 (한경국립대학교) 이정근 (한경국립대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제30권 제12호
발행연도
2024.12
수록면
1,373 - 1,379 (7page)
DOI
10.5302/J.ICROS.2024.24.0209

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A magnetometer should be calibrated to correct errors such as offset, scale factor, misalignment soft iron distortion, and hard iron distortion so as to achieve accurate azimuth estimation. An outlier elimination method has been recently proposed to improve calibration performance by eliminating the outliers of calibration data. In this method, it is assumed that calibration data is collected in a uniform distribution to form a sphere. However, considering the actual data collection process, it is difficult to guarantee uniformly distributed data. Thus, this study investigates the effects of outlier elimination on the performance of ellipsoid fitting-based magnetometer calibration. In this study, the calibration performances before and after outlier elimination were compared for the following three cases: uniformly distributed data with insignificant outliers (Case 1), uniformly distributed data with significant outliers (Case 2), and nonuniformly distributed data (Case 3). In addition, the calibration performances were compared according to a threshold for detecting outliers. The results of this study showed that outlier elimination changed the azimuth estimation performance by -0.002°, 0.711°, and -2.588° for Cases 1–3, respectively, in terms of root mean squared error. Overall, these results indicate that outlier elimination is effective for uniformly distributed data with significant outliers; however, it causes performance degradation for nonuniformly distributed data. Therefore, it is essential to examine the distribution of calibration data before applying outlier elimination.

목차

Abstract
I. 서론
II. 방법
III. 실험 및 분석 방법
IV. 결과 및 고찰
V. 결론
REFERENCES

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091208908