메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Shengdong Wang (Northwestern Polytechnical University) Zhenbao Liu (Northwestern Polytechnical University) Zhen Jia (Northwestern Polytechnical University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2024
발행연도
2024.10
수록면
762 - 767 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As a kind of unmanned aerial vehicle (UAV) with new layout, the flying-wing UAVs have received increasing attention with unique advantages. Precise fault diagnosis for its critical sensor system can effectively enhance the safety of flight missions. Without the requirement of precise mechanism models, deep learning-based approaches can automatically excavate valuable information and identify the sensor faults intelligently. However, single deep learning model has deficiency in diagnostic precision and stability. In this study, one enhanced ensemble deep auto-encoder (EEDAE) model is proposed to simultaneously combine the advantages of ensemble strategy and deep learning models. First, different structure parameters are generated and diverse training subsets are randomly bootstrapped to increase the diversity of base models and extract critical features from raw data automatically. Meanwhile, to further enhance the effect of model integration, one enhanced weighted voting (EWV) strategy with threshold is designed to realize selective model ensemble through removing the models with poor performance and assigning the voting weights to the remaining models based on their diagnostic accuracy. Finally, the experimental results indicate that the designed EEDAE can realize prominent performance on sensor fault diagnosis.

목차

Abstract
1. INTRODUCTION
2. METHODOLOGY
3. EXPERIMENT VERIFICATION
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0