메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김준성 (조선대학교, 조선대학교 대학원)

지도교수
박형준
발행연도
2016
저작권
조선대학교 논문은 저작권에 의해 보호받습니다.

이용수5

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
As there has been an increasing interest in work-related musculoskeletal disorders (MSDs) due to repetitive motion in various industries, many efforts have been made to prevent these MSDs in view of ergonomics. The first step toward the prevention of the MSDs is the accurate measurement of working postures which is followed by their analysis that can be done by one of methods such as NIOSH Lifting Equation (NLE), Ovako Working Posture Analysis System (OWAS), Rapid Upper Limb Assessment (RULA), Rapid Entire Body Assessment (REBA), etc.
There are largely two types of methods for measuring and analyzing working postures: image-based and motion-based. The image-based method using the captured images of working postures is relatively inexpensive. However, it is operated by the analyst with knowledge in ergonomics who usually needs much time and effort in image recording and analysis. Also, the analyst’s subjective opinions or mistakes may be reflected in the results, which are relatively less reliable. The motion-based method can produce accurate and consistent results since it uses a motion capturing and analysis system, which precisely measures work postures and analyzes them based on mathematical computation. However, the system is not always affordable and available as it is very expensive and requires a large space for its use.
Since the recent introduction of Kinect, which is a low-cost device for detecting and measuring the user’s motion, there have been various research works using this. In this thesis, as one of efforts to prevent MSDs, we propose a method for analyzing working postures using Kinect and Augmented Reality (AR) markers. Using the Kinect, we measure a worker’s posture and obtain its corresponding skeleton model. We use the captured skeleton model not only to animate a 3D human model in Unity3D but also to compute a set of values required to apply the REBA that assesses the workload of a given working posture. Moreover, we properly combine an AR marker tracking technique with the use of the Kinect in order to determine which side of the worker’s body the Kinect is facing and to measure the turning angle of the worker’s neck, which are not detectable only by the use of the Kinect. To show the quality and usefulness of the proposed method, we have implemented it and conducted experiments including its comparison to the image-based method in actual cases. As a result, we have found that the proposed method is fairly cost-efficient, decently accurate, and able to run in real-time.

목차

목차 i
그림 목차 iii
표 목차 v
ABSTRACT vi
제 1 장 서론 1
1.1 연구 배경 1
1.2 연구 목적 2
1.3 논문 구성 3
제 2 장 기존연구 고찰 5
2.1 근골격계 작업자세 평가 5
2.1.1 작업자의 작업자세 측정 5
2.1.2 작업자세 평가 8
2.2 Kinect를 이용한 골격 모델 생성 12
2.2.1 Kinect 작동 원리 및 응용 12
2.2.2 Kinect를 이용한 골격 정보 추적 14
제 3 장 Kinect를 이용한 작업자세 평가 방안 17
3.1 Kinect를 활용한 인체 모델 측정 17
3.1.1 Kinect 골격 정보와 가상 인체 모델 간의 연동 17
3.1.2 AR 마커 추적 기술 접목 19
3.2 Kinect 골격 정보와 REBA 평가 기법의 연계 23
3.2.1 REBA 평가 기법 23
3.2.2 부위별 각도 산출 방법 29
제 4 장 구현 및 적용 36
4.1 Kinect를 이용한 REBA 평가 시스템 구현 36
4.1.1 시스템 구성 36
4.1.2 REBA 평가 GUI 설계 37
4.2 적용 및 비교 38
4.2.1 적용 결과 39
4.2.2 영상 측정 기반과 비교 40
제 5 장 결론 및 토의 43
참고문헌 45
감사의 글 49

최근 본 자료

전체보기

댓글(0)

0